Single-dimension Software Pipelining for Multi-dimensional Loops

Hongbo Rong
Zhizhong Tang
Alban Douillet
Ramaswamy Govindarajan
Guang R. Gao

Presented by: Hongbo Rong
Loops and software pipelining are important.

Innermost loops are not enough [Burger&Goodman04]
- Billion-transistor architectures tend to have much more parallelism.

Previous methods for scheduling multi-dimensional loops are meeting new challenges.
Motivating Example

```c
int U[N1+1][N2+1], V[N1+1][N2+1];
L1: for (i1=0; i1<N1; i1++) {
    L2: for (i2=0; i2<N2; i2++) {
        a: U[i1+1][i2]=V[i1][i2]+ U[i1][i2];
        b: V[i1][i2+1]=U[i1+1][i2];
    }
}
```

A strong cycle in the inner loop: No parallelism
Loop Interchange Followed by Modulo Scheduling of the Inner Loop

- Why not select a better loop to software pipeline?
 - Which and how?
Starting from A Naïve Approach

<table>
<thead>
<tr>
<th>Cycle</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a(0,0)</td>
<td>b(0,0)</td>
<td>a(1,0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>b(1,0)</td>
<td>a(2,0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a(0,1)</td>
<td>b(2,0)</td>
<td>a(3,0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>b(3,0)</td>
<td>a(4,0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>---</td>
<td>b(0,1)</td>
<td>a(1,1)</td>
<td>---</td>
<td>b(3,0)</td>
</tr>
<tr>
<td>5</td>
<td>---</td>
<td>b(1,1)</td>
<td>a(2,1)</td>
<td>---</td>
<td>b(4,0)</td>
<td>a(5,0)</td>
</tr>
<tr>
<td>6</td>
<td>a(0,2)</td>
<td>---</td>
<td>b(2,1)</td>
<td>a(3,1)</td>
<td>---</td>
<td>b(5,0)</td>
</tr>
<tr>
<td>7</td>
<td>b(0,2)</td>
<td>a(1,2)</td>
<td>---</td>
<td>b(3,1)</td>
<td>a(4,1)</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>---</td>
<td>b(1,2)</td>
<td>a(2,2)</td>
<td>---</td>
<td>b(4,1)</td>
<td>a(5,1)</td>
</tr>
<tr>
<td>9</td>
<td>---</td>
<td>b(2,2)</td>
<td>a(3,2)</td>
<td>---</td>
<td>b(5,1)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>---</td>
<td>b(3,2)</td>
<td>a(4,2)</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>---</td>
<td>b(4,2)</td>
<td>a(5,2)</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>---</td>
<td>b(5,2)</td>
<td></td>
<td>---</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resource conflicts

2 function units
- **a**: 1 cycle
- **b**: 2 cycles

$N_2 = 3$
Looking from Another Angle

<table>
<thead>
<tr>
<th>Cycle</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a(0,0)</td>
<td>b(0,0)</td>
<td>a(1,0)</td>
<td>---</td>
<td>b(1,0)</td>
<td>a(2,0)</td>
</tr>
<tr>
<td>1</td>
<td>---</td>
<td>b(1,0)</td>
<td>a(2,0)</td>
<td>---</td>
<td>b(2,0)</td>
<td>a(3,0)</td>
</tr>
<tr>
<td>2</td>
<td>a(0,1)</td>
<td>---</td>
<td>b(2,0)</td>
<td>a(3,0)</td>
<td>---</td>
<td>b(3,0)</td>
</tr>
<tr>
<td>3</td>
<td>b(0,1)</td>
<td>a(1,1)</td>
<td>---</td>
<td>b(3,0)</td>
<td>a(4,0)</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>---</td>
<td>b(1,1)</td>
<td>a(2,1)</td>
<td>---</td>
<td>b(4,0)</td>
<td>a(5,0)</td>
</tr>
<tr>
<td>5</td>
<td>a(0,2)</td>
<td>---</td>
<td>b(2,1)</td>
<td>a(3,1)</td>
<td>---</td>
<td>b(5,0)</td>
</tr>
<tr>
<td>6</td>
<td>b(0,2)</td>
<td>a(1,2)</td>
<td>---</td>
<td>b(3,1)</td>
<td>a(4,1)</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>---</td>
<td>b(1,2)</td>
<td>a(2,2)</td>
<td>---</td>
<td>b(4,1)</td>
<td>a(5,1)</td>
</tr>
<tr>
<td>8</td>
<td>---</td>
<td>b(2,2)</td>
<td>a(3,2)</td>
<td>---</td>
<td>b(5,1)</td>
<td>---</td>
</tr>
<tr>
<td>9</td>
<td>---</td>
<td>b(3,2)</td>
<td>a(4,2)</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>---</td>
<td>b(4,2)</td>
<td>a(5,2)</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>---</td>
<td>b(5,2)</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initiation interval $T=1$

Kernel, with $S=3$ stages

Resource conflicts

Slice 1

Slice 2

Slice 3
SSP
(Single-dimension Software Pipelining)

Initiation interval $T=1$

Kernel, with $S=3$ stages

Delay = $(N^2-1)*S*T$
An iteration point per cycle

Filling & draining naturally overlapped

Dependences are still respected!

Resources fully used

Data reuse exploited!

SSP
(Single-dimension Software Pipelining)
int U[N_1+1][N_2+1], V[N_1+1][N_2+1];

L_1': for (i_1=0; i_1<N_1; i_1+=3) {
 b(i_1-1, N_2-1) a(i_1, 0)
 b(i_1, 0) a(i_1+1, 0)
 b(i_1+1, 0) a(i_1+2, 0)
}

L_2': for (i_2=1; i_2<N_2; i_2++) {
 a(i_1, i_2) b(i_1+2, i_2-1)
 b(i_1, i_2) a(i_1+1, i_2)
 b(i_1+1, i_2) a(i_1+2, i_2)
}

b(i_1-1, N_2-1)
Outline

- Motivation
- Problem Formulation & Perspective
- Properties
- Extensions
- Current and Future work
- Code Generation and experiments
Problem Formulation

Given a loop nest L composed of n loops L_1, \ldots, L_n, identify the most profitable loop level L_x with $1 \leq x \leq n$, and software pipeline it.

- Which loop to software pipeline?
- How to software pipeline the selected loop?
 - How to handle the n-D dependences?
 - How to enforce resource constraints?
 - How can we guarantee that repeating patterns will definitely appear?
Single-dimension Software Pipelining

- A resource-constrained scheduling method for loop nests
- Can schedule at an arbitrary level
- Simplify n-D dependences to 1-D
- 3 steps
 - Loop Selection
 - Dependence Simplification and 1-D Schedule Construction
 - Final schedule computation
Perspective

- Which loop to software pipeline?
 - Most profitable one in terms of parallelism, data reuse, or others

- How to software pipeline the selected loop?
 - Allocate iteration points to slices
 - Software pipeline each slice
 - Partition slices into groups
 - Delay groups until resources available

Enforce resource constraints in two steps
How to handle dependences?

- If a dependence is respected before pushing-down the groups, it will be respected afterwards
- Simplify dependences from n-D to 1-D
How to handle dependences?

Dependences within a slice

Dependences between slices

Still respected after pushing down

<1,0>

<0,0>

<0,1>

a

b
Simplify n-D Dependences

Only the first distance useful

\[(i_1, 0, \ldots, 0,0) \quad (i_1+1, 0, \ldots, 0,0)\]

\[(i_1, 0, \ldots, 0,1) \quad (i_1+1, 0, \ldots, 0,1)\]

Cycle
Step 1: Loop Selection

- Scan each loop.
- Evaluate parallelism
 - Recurrence Minimum II (RecMII) from the cycles in 1-D DDG
- Evaluate data reuse
 - average memory accesses of an S*S tile from the future final schedule (optimized iteration space).
Example: Evaluate Parallelism

Inner loop:
RecMII = 3

Outer loop:
RecMII = 1
Symbolic parameters
- \(S \): total stages
- \(l \): cache line size

Evaluate data reuse [WolfLam91]
- Localize
 - space = span\{ (0,1), (1,0) \}
- Calculate equivalent classes for temporal and spatial reuse space
- average accesses = \(\frac{2}{l}\)

Evaluate Data Reuse
Step 2: Dependence Simplification and 1-D Schedule Construction

- Dependence Simplification
- 1-D schedule construction

Modulo property
Resource constraints
Sequential constraints
Dependence constraints
Final Schedule
Computation
Example: a(5,2)
Step 3: Final Schedule Computation

For any operation o, iteration point $I=(i_1, i_2, \ldots, i_n)$,

$$f(o, I) = s(o, i_1)$$

Modulo schedule time

$$+ \sum_{\forall x, 2 \leq x \leq n} (i_x \ast \prod_{\forall y, x \leq y \leq n+1} N_y) \ast S \ast T$$

Distance between $o(i_1, 0, \ldots, 0)$ and $o(i_1, i_2, \ldots, i_n)$

$$+ \left[\frac{i_1}{S} \right] \ast \prod_{\forall x, 2 \leq x \leq n} (N_x - 1) \ast S \ast T$$

Delay from pushing down
Outline

- Motivation
- Problem Formulation & Perspective
- Properties
- Extensions
- Current and Future work
- Code Generation and experiments
Correctness of the Final Schedule

- Respects the original n-D dependences
 - Although we use 1-D dependences in scheduling
- No resource competition
- Repeating patterns definitely appear
Efficiency of the Final Schedule

- Schedule length \leq the innermost-centric approach
 - One iteration point per T cycles
 - Draining and filling of pipelines naturally overlapped
- Execution time: even better
 - Data reuse exploited from outermost and innermost dimensions
The classical MS for single loops is subsumed as a special case of SSP

- No sequential constraints
- \(f(o,I) = \) Modulo schedule time \((s(o, i_1)) \)
Outline

- Motivation
- Problem Formulation & Perspective
- Properties
- Extensions
- Current and Future work
- Code Generation and experiments
SSP for Imperfect Loop Nest

- Loop selection
- Dependence simplification and 1-D schedule construction
 - Sequential constraints
- Final schedule
SSP for Imperfect Loop Nest (Cont.)
Outline

- Motivation
- Problem Formulation & Perspective
- Properties
- Extensions
- Current and Future work
- Code Generation and experiments
Compiler Platform Under Construction

C/C++/Fortran

gfec/gfecc/f90

Very High WHIRL

High WHIRL

Middle WHIRL

Low WHIRL

Very Low WHIRL

Pre-Loop Selection

Consistency Maintenance

Loop Selection

Selected Loop

Dependence Simplification

1-D DDG

1-D Schedule Construction

Intermediate kernel

Bundling

Bundled kernel

Register Allocation

Register-allocated kernel

Code generation

Assembly code
Current and Future Work

- Register allocation
- Implementation and evaluation
- Interaction and comparison with pre-transforming the loop nest
 - Unroll-and-jam
 - Tiling
 - Loop interchange
 - Loop skewing and Peeling
 -
An (Incomplete) Taxonomy of Software Pipelining

Software Pipelining

For 1-dimensional loops
- Modulo scheduling and others

For n-dimensional loops
- Outer Loop Pipelining [MuthukumarDoshi01]
- Hierarchical reduction [Lam88]
- Pipelining-dovetailing [WangGao96]

Resource-constrained
- Linear scheduling with constants [DarteEtal00,94]

Innermost-loop centric
- Affine-by-statement scheduling [DarteEtal00,94]
- Statement-level rational affine scheduling [Ramanujam94]

Parallelism-oriented
- r-periodic scheduling [GaoEtAl93]
- Juggling problem [DarteEtAl02]

SSP
Outline

- Motivation
- Problem Formulation & Perspective
- Properties
- Extensions
- Current and Future work
- Code Generation and experiments
Code Generation

Loop nest in CGIR

SSP

Intermediate Kernel

Register allocation

Register-allocated kernel

Code Generation

Final code

Problem Statement

Given an register allocated kernel generated by SSP and a target architecture, generate the SSP final schedule, while reducing code size and loop control overheads.
Code Generation: Challenges

- Multiple repeating patterns
 - Code emission algorithms

- Register Assignment
 - Lack of multiple rotating register files
 - Mix of rotating registers and static register renaming techniques

- Loop and drain control
 - Predicated execution
 - Loop counters
 - Branch instructions

- Code size increase
 - Code compression techniques
Experiments: Setup

- Stand-alone module at assembly level.
- Software-pipelining using Huff's modulo-scheduling.
- SSP kernel generation & register allocation by hand.
- Scheduling algorithms: MS, xMS, SSP, CS-SSP
- Other optimizations: unroll-and-jam, loop tiling
- Benchmarks: MM, HD, LU, SOR
- Itanium workstation 733MHz, 16KB/96KB/2MB/2GB
Experiments: Relative Speedup

- Speedup between 1.1 and 4.24, average 2.1.
- Better performance: better parallelism and/or better data reuse.
- Code-size optimized version performs as well as original version.
- Code duplication and code size do not degrade performance.
Bundle density measures average number of non-NOP in a bundle.
- Average: MS-xMS: 1.90, SSP: 1.91, CS-SSP: 2.1
- CS-SSP produces a denser code.
- CS-SSP makes better use of available resources.
Experiments: Relative Code Size

- SSP code is between 3.6 and 9.0 times bigger than MS/xMS.
- CS-SSP code is between 2 and 6.85 times bigger than MS/xMS.
- Because of multiple patterns and code duplication in innermost loop.
- However entire code (~4KB) easily fits in the L1 instruction cache.
Acknowledgement

- Prof. Bogong Su, Dr. Hongbo Yang
- Anonymous reviewers
- Chan, Sun C.
- NSF, DOE agencies
Appendix

- The following slides are for the detailed performance analysis of SSP.
Exploiting Parallelism from the Whole Iteration Space

- Represents a class of important application
- Strong dependence cycle in the innermost loop
- The middle loop has negative dependence but can be removed.

(Matrix size is $N\times N$)
Exploiting Data Reuse from the Whole Iteration Space
Advantage of Code Generation

![Graph showing Speedup vs N for different code generation methods.](image)
Exploiting Parallelism from the Whole Iteration Space (Cont.)

Both have dependence cycles in the innermost loop
Exploiting Data Reuse from the Whole Iteration Space
Exploiting Data Reuse from the Whole Iteration Space (Cont.)
Exploiting Data Reuse from the Whole Iteration Space (Cont.)

(Matrix size is $j_n \times j_n$)
Advantage of Code Generation

- SSP considers all operations in constructing 1-D schedule, thus effectively offsets the overhead of operations out of the innermost loop.
Performance Analysis from L2 Cache misses

Cache misses relative to MS
Performance Analysis from L3 Cache misses
Comparison with Linear Schedule

- Linear schedule
 - Traditionally apply to multi-processing, systolic arrays, etc., not for uniprocessor
 - Parallelism oriented. Do not consider
 - Fine-grain resource constraints
 - Register usage
 - Data reuse
 - Code generation
 - Communicate values through memory, or message passing, etc.
Optimized Iteration Space of A Linear Schedule